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Urban Object Detection In Aerial Images

Urban object definition :
@ The appearance of the objects varies :
color, size, orientation...

@ Multiple distortions and occlusions due
to shadows, vegetation..

@ Multiple-object detection

About the databases of aerial images :

@ 19 images for the training database
@ 3 images for the validation database

@ 2 images for the testing database
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Features Extraction

Extraction of multiple Histograms of Oriented Gradients
o Calculate HOG within cells and blocks
@ Accumulate features to construct HOG descriptor of different
sizes
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Flgure HOG representatlon for 9x9 cells size.
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Color Features Extraction

How can we extract the best descriptor based on the HOG
descriptor when there are 3 channels (color image)?

@ Transform the color image input into grey level

@ Extract HOG descriptor on each channel and concatenate
them

© Only take into account the highest gradient
© Reduce the dimension (PCA...)
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HOG and SVM Network

HOG extraction in a
sliding window
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Figure : SVM Network works on grey level images.
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HOG and SVM Network

HOG extraction in a
sliding window
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Figure : SVM Network works on color images called separate architecture.
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Color space

What is the best discriminant color space?
e RGB
e Y =0.2IR + 0.71G + 0.07B
e CIE — LAB and CIE — LUV (based on human perception)
@ HSV (cylindrical-coordinate representations of RGB)

@ Use a PCA transformation
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Experimental results

SVM Network vs SVM Single :

@ SVM Network always improves
the precision

@ The performance from different
color spaces are very closed.

@ HSV and RGB : the 2 bests
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Experimental results

SVM Network vs SVM Single :

@ SVM Network always improves
the precision

@ The performance from different
color spaces are very closed.

@ HSV and RGB : the 2 bests

=> But the colors are threaten separately in the SVM Network...
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Design the network

1- Fusion of channels per resolution

Concatenate the different channels from the same resolution.
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Figure : Representation of the Fusion Network

Different channels are not necessarily in the same feature space,
: HSV.
=> Normalisation problem
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Design the network

2- A specific function to merge the channels per resolution

Connect all input neurons with the

nput layer . Hidden layer  Output same resolution r to a specific

:;W function :
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@ The first principal component

Figure : Representation of (PCA transformation)

the Maximum Network

=> The quantification may lose important information.



How taking into account color information
ocoe

Design the network

3- Stacking of channels per resolution
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Figure : Representation of the Stack Network

@ Features from different channels are scaled and used in the

same neuron
@ Each weight is learned by using an SVM
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Figure : ROC curves for the separate and fusion architectures
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Figure : ROC curves for the fusion, product and maximum architectures
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ROC curves for the fusion, maximum and stack architectures



Experimental results

[eJele] ]

Overview of the Network performance
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Figure : Precision gain is compared to the separate architecture.
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Summary

Conclusions

@ SVM Network outperforms SVM by an average precision gain
ranging from 1.5% to 6%.

@ SVM Network design (e.g. Stack Design) would improve to
10% the precision.

v

@ Design an SVM Network to combine several feature types :
SUREF, SIFT...

@ Design a CNN input neurons.

N
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Thanks!
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Appendix

The best Parameters for SVM Network
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Figure : Tuning of the SVM Network on a validation database

Before each experiment the SVM network used a validation
database to fix the best number of hidden.and-random neurons.
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